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Abstract. The typical fraction of the space of interactions between each pair of N Ising 
spins which solve the problem of storing a given set of p random patterns as N-bit spin 
configurations is considered. The volume is calculated explicitly as a function of the storage 
ratio, a = p / N ,  of the value K ( > O )  of the product of the spin and the magnetic field at 
each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and 
1 (completely correlated). The capacity increases with the correlation between patterns 
from a = 2 for correlated patterns with K = 0 and tends to infinity as m tends to 1. The 
calculations use a saddle-point method and the order parameters at the saddle point are 
assumed to be replica symmetric. This solution is shown to be locally stable. A local 
iterative learning algorithm for updating the interactions is given which will converge to 
a solution of given K provided such solutions exist. 

1. Introduction 

There has been a lot of recent interest in McCulloch-Pitts (1943) neural networks 
(Hebb 1949, Little 1974, Hopfield 1982). Analytic results (Amit et a1 1985a, b, 1987a, b, 
Kanter and Sompolinsky 1987, Mtzard er a1 1986, Bruce et a1 1987, Gardner 1986) 
have been obtained for thermodynamic and dynamical quantities using particular 
storage prescriptions for the coupling strengths. The storage capacity for the Hopfield 
model for random patterns is p = 0.14N, while the pseudo-inverse (Kohonen 1984, 
Personnaz et al 1985, Kanter and Sompolinsky 1987) stores N linearly independent 
patterns. For very correlated patterns, each with magnetisation m, where 1 - m - 
In N /  N, there is a prescription (Willshaw et al 1969, Willshaw and Longuet-Higgins 
1970) which stores ofthe order of N*/(ln N)’patterns. However, the maximum storage 
capacity of these networks can be larger. In the random case, the maximum number 
of patterns is 2N (Cover 1965, Venkatesh 1986a, b, Baldi and Venkatesh 1987) and 
we will show that this increases for correlated patterns. 

The network is defined as follows. Ising spins, Si = *l, are defined on each site 
i, i = 1, .  . . , N. They are updated according to the rule 

S i ( t + l ) = s g n ( h i ( t ) -  T,) (1) 

where Si( t )  is the Ising spin at time t and the internal magnetic field hi (  t )  at time t 
and site i is given by 

where J, is the interaction strength for the bond from site j to site i. The interactions 
J, and need not in general be equal. The field T, is a local threshold at the site i 
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which is fixed in time and the interactions J ,  are defined so that 

at each site i. The configuration { S , }  is thus a fixed point of the dynamics ( l ) ,  provided 
the quantity 

(3) 

is positive on each site i. 
This paper follows a recent letter (Gardner 1987a) and will be concerned with the 

problem of choosing interaction strengths J,, such that p = a N  prescribed N-bit spin 
configurations or patterns, 

R,  = S , ( h ( { S , } )  - TO 

g = + 1  p = l ,  . . . ,  p ; i = l ,  . . . ,  N 

will be stored as fixed points of the dynamics defined in (1). It will turn out, however, 
that the requirement that each pattern is a fixed point is not sufficient to guarantee a 
finite basin of attraction and the stronger condition 

SY(h({S,”)) - T # ) >  K (4) 

where K is a positive constant, will be imposed at each site i and for each pattern p. 
Larger values of K should imply larger basins of attraction. 

The quantity of interest will be the density of states or  the typical fractional volume 
of the space of solutions for the couplings {J,,} to ( 2 b )  and (4) and this will first be 
calculated. The volume vanishes above a value a ,  of a which depends on the stability 
K and this determines the maximum storage capacity of the network. Secondly, a local 
iterative algorithm will be given which will converge to a solution of given K provided 
such solutions exist. 

In 0 2 ,  the volume will be calculated for uncorrelated patterns, where the thresholds 
T, are set equal to zero. For K = 0, the volume vanishes as CY increases towards 2 and 
this determines the maximum storage capacity in agreement with the known results 
(Cover 1965, Venkatesh 1986a, b).  The upper storage capacity ( Y , ( K )  is calculated and 
decreases with K. In 0 3, the calculation is repeated for patterns with a fixed magnetisa- 
tion m and it is shown that the storage capacity increases with the correlation m 2  
between the patterns and, in particular, that a,  tends to infinity as m tends to 1 (for 
K = 0). The network, therefore, can store more patterns if the constraints (4) are 
correlated. However, correlated patterns contain less information than random patterns 
and the information capacity of the network will turn out to decrease slightly with m. 

The calculation of the typical fractional volume of the space of interactions {J),} 
which solve (4) is done by introducing replicas in this space while the prescribed 
patterns remain quenched. This is the inverse of what is done in the spin-glass problem 
(Edwards and Anderson 1975, Sherrington and  Kirkpatrick 1975) where the interactions 
are quenched and the spins are allowed to vary. Since all pairs of spins are connected, 
the fractional volume can be obtained exactly using a saddle-point method. The 
integration is over variables, 
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and the replica-symmetric ansatz 

is assumed at the saddle point. The physical interpretation of the order parameter q 
is similar to that of the Edwards-Anderson order parameter in spin glasses and 
characterises the typical overlap between pairs of solutions for the couplings. As a 
increases, different solutions to (4) become more correlated and q increases. In 
particular, the fractional volume vanishes as q tends to its maximum value which is 
1 (by equation (2b) )  and the condition q = 1 therefore determines a,. The local stability 
of the replica-symmetric solution is proved in the appendix. 

Since explicit solutions for the optimal J,, are not known, it is necessary to have 
an  algorithm for constructing solutions. In 5 4 a local iterative learning algorithm will 
be defined which is a generalisation of perceptron learning (Rosenblatt 1962, Minsky 
and  Papert 1969) to many threshold functions and to non-zero values of K necessary 
in order to obtain finite basins of attraction. The advantage of this kind of algorithm 
is that a convergence theorem exists. Provided solutions to the problem of storing the 
patterns with fixed K > 0 to equation (4) exist, the algorithms are guaranteed to converge 
to one such solution. 

2. Calculation of the fractional volume of interactions for uncorrelated patterns with 
zero local threshold 

In this section, the threshold Ti in equation (1) will be set equal to zero and the [t 
will be taken to be random patterns. Since the quantity 

is one if the patterns can be stored and zero otherwise, the fraction of phase space V, 
which satisfies (2b)  and (4) is given by 

for a given realisation of the random patterns {.$}. The fractional volume V, may be 
written 

where Vi is the fractional volume in the space of interactions { J , , }  for fixed i. In the 
thermodynamic limit, we therefore have to study 

We now assume that this quantity is self-averaging and it is necessary only to calculate 
(In V), the average of In V, over the quenched distribution of the patterns {[t; p = 
1, . . . , p } .  This is done using the replica method, 

( V " ) - 1  
(In V) = lim -. 

n - 0  n 
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The method assumes the validity of the analytic continuation from positive integer to 
zero values of n The expectation ( V " )  is given by 

where a = 1, . . . , n is the replica index and JpI is the realisation of the Jv for replica a. 
The mean-field calculation of (9) is done by introducing integral representations 

of the e functions for each pattern p and each replica a, 

The average over the random patterns ,$' in (9) at sites j # i gives 

Neglecting terms which are of order 1/ N relative to the leading term, equation (1 1) 
becomes 

e x ~ [ - i Z  f i  0 . P  x;x$( J f l  JGJfIN)]. 

The calculation of (9) can be done by introducing a variable qop, 

and a momentum Fop conjugate to qap, in order to impose the constraint (13). The 
variable E" will also be introduced for each a in order to impose the constraint ( 5 ) .  
( V " )  can then be written 

where 

because the integrals over x and A factorise over the patterns p and the integrals over 
the J factorise over the sites j .  In the large-N limit ( V " )  is given by taking the saddle 
point over the variables Fap, quo and E, of the function 
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In order to find this saddle point, the replica-symmetric ansatz 

q”P = 4 a < P  

E ” = E  for all a (18) 

FOP = F a < p  

will be assumed. This assumption is reasonable because the space of the solutions to 
( 4 )  is connected; any solution of (4) can be continuously deformed into any other 
solution. In the appendix it will be shown that this solution is locally stable. 

The saddle-point equations for F and E are algebraic and so these variables can 
be eliminated and, as n tends to zero, ( V ” )  is given by 

(V“)=exp[Nn(min G ( q ) + O ( l / N ) ) ]  (19) 
9 

in the large-N limit where 

H ( x )  = Dz. 

The maximum of G over the variable q is given by the saddle-point equation 

The physical interpretation of the variable q at the replica-symmetric saddle point 
can be found by differentiating with respect to F, 

q is therefore the typical overlap between pairs of solutions to ( 4 )  and is similar to 
the Edwards-Anderson order parameter of spin glasses. As a + 0, q + 0 from equation 
( 2 3 ) ;  for a = O  all J,, solve ( 4 )  and the typical overlap is equal to the most probable 
overlap between random pairs of configurations in the space of interactions. As a 
increases, solutions become more correlated and q increases. As q + 1 the number of 
solutions tends to zero and the typical volume tends to zero. The upper storage capacity 
of the network is therefore given by taking the limit q + 1 in equation ( 2 3 ) .  

As q + 1, the integral in ( 2 3 )  is dominated by values of t > - K  and the maximum 
value of a is given by 

a ,  = ( D t ( t + K 1 2 )  - ’ . ( 2 5 )  

Taking the limit K + 0 in equation ( 2 5 )  gives a,  = 2 in agreement with the known results 
(Cover 1965, Venkatesh 1986a, b, Baldi and Venkatesh 1987). As the stability K 

increases, the constraints ( 4 )  become stronger and the optimal value a ,  of a decreases. 
( Y , ( K )  is plotted in figure 1 .  
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1 0 1 2 3 
K 

Figure 1. The critical storage ratio, ac, as a function of K for values of m =0, 0.5 and 0.8. 

3. Correlated patterns 

In this section, the calculation of § 2 will be repeated for correlated patterns including 
the local threshold term, T,. A simple way of imposing a correlation between the 
patterns is to choose all of them to have the same magnetisation m. The 57 are 
independent random variables with distribution 

P ( ~ Y )  = $ ( l + m ) ~ ( t Y - l ) + f ( l  - m ) 6 ( 5 7 + 1 ) .  (26) 

The expectation ( V " )  of equation ( 9 )  can be found by averaging over the distribution 
(26) and using the integral representation for the 6 functions in equation (10). This 
gives a term 

Expansion of the logarithm up to second order in Za JG x E / d N  gives 

e x p [ - i z  P" ( m M , - T ) x : t Y - - i ( l - m ' ) (  P." C ( x z ) ' + 2  Q ' P  q e P x ; x 1 ) ]  

where 9"' is given by equation ( 1 3 )  and 

(28)  

Higher-order terms in the expansion vanish as N +a. The constraints (13), (29)  and 
(5) are imposed by introducing order parameters Fa', K " ,  E" ,  respectively. In the 
large-hi limit, however, the effect of K "  is of order 1 /  N relative to the other terms. 
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In this limit, (V") can be written 

1 
lim -In( V") 
N-CC N 

= lim I l n (  { fi dM, dE, n dq,, dFnp 
a = l  a < ,  N + X  N 

where G2 is again given by equation (16) and 

- t ( l - m 2 ) C x Z , - ( 1 - m 2 )  c ~ o p x a x p ) )  (31) 

In the large-N limit, (1/N) In( V") is given by taking the saddle point over the 
where ( ) means an average over the variable 6 with the distribution (26). 

variables Fa,, qmp, E, and M, of the function 

G(q,,, Mm 9 F o p ,  E n )  = aGt(qap, ) + G,(Fap, E, ) - qupFnp + 4 Ea (32) 
a', a 

and the replica-symmetric ansatz ( 18), together with the condition 

M , = M  (33) 
will be assumed in order to find a saddle point. The local stability of the solution is 
checked in the appendix. Elimination of the variables F and E as in the previous 
section gives, for the limits n + 0, N + CO, 

G(q, M, T ) + O ( l / N )  (34) 

where the extremum ext means a maximum with respect to the variable M and a 
minimum with respect to the variables q and where 

G(q, M T) = G(q, U )  

++ In(1- q )  + t q / ( l -  q )  (35) 

and where 
u = M - T/m. (36) 

The threshold T can therefore be eliminated. Any local external field can be com- 
pensated for by variation of the order parameter M. The physical interpretation of M 
at the replica-symmetric saddle point is obtained from equation (29) and is the typical 
ferromagnetic bias in the couplings. 
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In order to find the storage capacity as a function of CY and m, the limit q +  1 is 
taken in equations (36)  and (37) .  The equation for a C ( m ,  K )  is 

where U is given by 

The storage capacity increases with correlation m, as one would expect, since the 
constraints in equation (4) become more correlated. In particular, for K = 0 and small 
values of m, (37)  and (38)  give 

CY, = 2( 1 +2m2/57+ o ( ~ ~ ) )  (39)  

and as m tends to 1 ,  a, diverges as 

1 
C Y c =  - (1 - m )  ln(1- m )  (40)  

for K = O .  
For general values of K and m, equations (37)  and (38)  can be solved numerically. 

In figure 1, C Y , ( K )  is plotted for m =0,  0.5, 0.8 and in figure 2, a,(m) and u(m) are 
plotted for K = 0. It is interesting to compare these optimal results with those of specific 

m 

Figure 2. The critical storage ratio ac, the typical ferromagnetic bias M (for zero thresholds 
T , )  and the information capacity I as functions of m for K = 0. 
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storage prescriptions for the interactions. The divergence as m tends to 1 in equation 
(40) is obtained for a model of patterns which are very correlated (Willshaw et a1 
1969, Willshaw and Longuet-Higgins 1970). The number of different spins in the 
patterns is of order In N, implying 1 - m - In N/  N and the storage capacity is of order 
N2/ ( ln  N)? instead of order N. This relation between m and (Y agrees with equation 
(4), although the largest value of the coefficient of N2/(ln N)’ is a factor 2(ln 2)2- 0.96 
smaller than the optimal result (40) with K = O .  

Although the storage capacity increases with the correlation between patterns, the 
amount of information per pattern decreases. The total information capacity is the 
total number of bits stored in the patterns 

For random patterns (m = 0) we have 

or twice the number of bonds. 
I = 2 N 2  (42) 

I =2N2[1  - ( 2 / 7 ~ - 1 / 2  In 2)m2] = 2 N 2 ( 1  -0.084m2) 

I = N 2 / 2  In 2 = 0.721N2. 

The information capacity I, however, decreases slightly with m. For small m, 

(43) 

(44) 

and, as m tends to 1, 

In figure 2, I is plotted as a function of m for K = O .  

4. Local iterative learning algorithm 

In this section, a local learning algorithm for updating the couplings which, provided 
solutions to (4) of given K exist, is guaranteed to converge to one such solution, will 
be given. The algorithm is a gradient descent and  its convergence follows from a 
generalisation of the perceptron convergence theorem (Rosenblatt 1962, Minsky and 
Papert 1969). It is a generalisation of the algorithm for K = O  (Wallace 1985, 1986, 
Bruce et a1 1986). 

The algorithm is defined as follows (for zero thresholds T, ) .  Let { J u }  be any set of 
couplings with the diagonal term J, ,  set equal to zero. A mask E ?  is defined at each 
site i and for each pattern p. 

and the couplings are updated according to the rule 

The algorithm must be done in series over the patterns but can be done either in 
series or in parallel for the sites and is iterated until E ?  vanishes for each site i and 
pattern p. Equation (46) is similar to the Hebb rule (Hebb 1949) except for the 
presence of the e t ;  changes are made to enhance the recall of pattern p only at sites 
which are in error according to condition (4).  

The convergence theorem is stated as follows. Suppose a solution J ;  exists such that 
/ \ I / Z  
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where S is some positive number for each pattern p and each site i. Then the algorithm 
of (45 )  and (46 )  will terminate in a finite number of steps. Before proving the theorem, 
some notation will be introduced. 

The scalar product of a pair of interaction matrices J and U at the site i is defined 
by 

and the norm of J at the site i by 

I l J i l ,  = ( ( J .  J ) , ) 1 ' 2 .  (49 )  

Let {Ji,'"} be the set of interactions after n applications of (46 )  at the site i and let 
X j n i  be defined by 

( J ' " '  ' J * ) ,  

lIJ'"'Il I IlJ*ll I . 
Xi"'= 

The theorem will be proved by assuming that the algorithm does not terminate 
after n steps, and that this requires X i " )  to become greater than 1 if n is sufficiently 
large. Since Xl"' is bounded above by 1, by the Schwarz inequality this is impossible 
and the algorithm must terminate. At time step n, the numerator of (50) changes to 

A(J'"' . J * ) !  = E :  (y(7.l; 
I # !  

because of equation (47 )  and, therefore, at time step n the numerator of (50) is bounded 
below 

( J ' " '  . J * ) ,  > / / J * / / , ( K  + S ) n  +(.I"' * J * ) , .  (52 )  

The change in the denominator comes from the change in the norm of J ' " ) ,  

A(J'"' . J ' " ' ) ,  = 2 ~ y  C J,,&y&T + NE! 
J # l  

< Ey(2KI IJ 'n ' l l ,+N)  ( 5 3 )  

since only wrong bits have E = 1 by equation (45 )  and so 

AIIJ'n'll, < K -I- N/211J'"'lI, ( 54 )  

for E = 1. 
Suppose the algorithm has been iterated n times (i.e. E !  # 0 has occurred n times) 

and has not terminated. The X:'" must be less than one at each step. Therefore, by ( 5 2 ) ,  

for each m < n and so, by (54 ) ,  
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and so 

Therefore Xl"' becomes larger than one for sufficiently large n, contradicting the 
hypothesis that the algorithm does not terminate. 

The algorithm (45) and (46) can be generalised to include learning of the local 
threshold term T, by defining a new site i = N + 1 which has spin = + 1  for all 
values of p and letting J,N+l = T,. 

Another generalisation is to the construction of a symmetric J,,. The change in Jl,, 
equation (46), is replaced by 

AJ,, = ( E ?  + E ; ) ~ Y . $ .  (58) 

In this case, the convergence theorem can be proved only if the algorithm is done 
in parallel in the sites. The proof is similar to that of the asymmetric algorithm except 
that the scalar product at site i (48) is replaced by 

J * U = C J,, U,, . (59) 
' J  

I f 1  

5. Conclusions 

In this paper, a calculational method has been introduced which allows the maximum 
storage capacity of neural networks to be determined. In particular, if the patterns 
are correlated in the sense that they all have an equal magnetisation m, the capacity 
increases with the correlation between the patterns from CY = 2 for random patterns 
and diverges as m tends to one. 

This increase in capacity allows for the possibility that neural networks can be 
more efficient than comparison algorithms. If CY is restricted to be less than one, as 
in the Hopfield model or in the pseudo-inverse, the recognition can be done more 
efficiently by simply comparing the noisy initial vector with each input pattern in order 
p N  steps, whereas one step of parallel iteration in a neural network involves multiplying 
the N x N interaction matrix JI, by a vector and involves N 2  steps. In this sense, 
provided the number of iterations to stability is not too large, neural networks can be 
more efficient if CY is sufficiently larger than one. This relative efficiency therefore 
increases with the correlation m. Basins of attraction, however, are likely to be smaller 
in the neural network compared with recognition with nearly 100°/~ noise for com- 
parison algorithms. 

Since no explicit expressions for the optimal couplings exist, it is necessary to have 
a method for constructing them. The algorithms of P 4 are proved to converge to a 
solution of given K provided such solutions exist. Other algorithms with convergence 
theorems similar to those of perceptrons also exist. For example (Gardner et a1 1987) 
training with noisy initial vectors can also lead to finite basins of attraction. There are 
also algorithms like those of § 4 (Krauth and MCzard 1987) and algorithms which are 
similar but exclude the scaling of K by the norm of J at the site i (Diederich and 
Opper 1987). The algorithms are also similar to the back propagation algorithms of 
Rumelhart et a1 (1985) used in hidden unit models, although in this case no convergence 
theorem exists. 
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The methods used in § §  2 and 3 can be generalised to many other situations. If, 
for example, one is interested in the storage of patterns allowing for a fraction of the 
bits to be in error, the upper capacity can be increased (Gardner and  Derrida 1988). 
This can be thought of as an  optimisation problem with cost function equal to the 
total number of wrong bits, 

where cy  is defined in equation (45). For a < 2 ,  the minimum cost function is zero, 
while for cy > 2 this value increases. It is also possible to generalise to different 
distributions of the interactions; for example, J,, = *l (Gardner and  Derrida 1988). 

Associative memory and other properties of the learned models can also be deter- 
mined using similar methods. In particular, the content-addressability as a function 
of K has been calculated for a diluted version of the model (Gardner 1987b). In this 
model finite values of K d o  lead to finite basins of attraction whose size increases with 
the parameter K .  Numerical evidence (Forrest 1988) using the algorithms of 0 4 for 
the fully connected model also suggests that finite values of K lead to finite content 
addressability. 

There are many other possible generalisations. In particular, the above calculations 
have been done with asymmetric J,, and it would be interesting to understand the effect 
of imposing the symmetry J,, = J,$ on the interactions. It would also be interesting to 
generalise the calculations to other properties of typical solutions, to cycles of patterns, 
(Kanter and Sompolinsky 1986) and to models with hidden units (Rumelhart eta1 1985). 
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Appendix 

In this appendix we will show that the replica-symmetric solution of $ 9  2 and 3 is 
locally stable. The stability is determined from the signs of the eigenvalues of the 
matrix of quadratic fluctuations in the n ( n  + 1)  variables M u ,  Q"', E" and FuP at the 
replica-symmetric saddle point (23), (36) and (37) of equations (17) and (32). Because 
the solutions are unique in the replica-symmetric subspace, it should be necessary only 
to consider transverse fluctuations to this space. The eigenfunctions of G; and  G2 
whose eigenvalues are not degenerate with the longitudinal eigenvalues span a n  
n ( n  -3)-dimensional subspace of the full n ( n  + 1)-dimensional space and their struc- 
ture is the same as for the spin-glass problem (de  Almeida et a1 1978). If pup and tep 
are the fluctuations in qap and F u P ,  respectively, for a < P these eigenfunctions of G: 
and G2 are parallel and are of the form 

a = ao, P = P o  
a or 
a9 P f a o ,  P o  

= a0 or P o  
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while the fluctuations in M" and  E" vanish. The values of c,, d,, i = 1 ,2 ,3 ,  are chosen 
so that these eigenfunctions are orthogonal to the degenerate scalar and the vector 
eigenfunctions and span an  n ( n  - 3)-dimensional space. 

There are therefore two 4 n (  n - 3)-fold degenerate eigenvalues of d2G/a2(q, F) 
(equations (17) and (32)) which are eigenvalues of the matrix 

P - 2 Q i R  

where 

At cy = 0, the solution to the mean-field equations (23) and (37) is q =0,  P ' - 2 Q ' +  
R'=O and so the product of the eigenvalues of (A2) is - 1 .  The solution is stable in 
this limit because it is simply an  integral over the phase space of couplings. The sign 
- 1  is due to change of variable F + iF in equation (14) from its introduction as the 
variable conjugate to q. In this limit a + a,, q + 1 and 

P - 2 Q + R + -  I ( l + m )  D t + $ ( l -  m )  
( - * - o m  ) / ( I  - m Z ) '  ' Dr> i' 

(A41 

( 1  - cy d 2  ( 1  l ~ ~ * + ~ m ) , ~ l - m ' ~ l ~ ~  

P ' - 2 Q ' +  R ' +  ( 1  - 4)' 

and using equations (37) and (38), the product of eigenvalues is 

which is negative provided K is positive. 
The sign of the product of eigenvalues therefore does not change as q increases 

from zero to one and cy increases from zero to a,, and the replica-symmetric solution 
is therefore stable. A vanishing eigenvalue occurs only in the limit cy + cy, and K + 0. 
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